In addition to StARS’ edge
stability and G-StARS’ induced subgraph stability, pulsar
can be used to compute other model selection criteria. By defining a few
auxiliary functions, pulsar
can conveniently recapitulate a
number of recently proposed selection criteria, e.g., Tandon and Ravikumar (2014)’s sufficiency
measure for hub discovery or Caballe, Bochkina,
and Mayer (2015)’s augmented AGNES scheme.
The sufficiency criterion defined by Tandon and Ravikumar (2014) uses edge stability to identify hub and non-hub nodes. Graphs are learned from the neighborhoods of non-hub nodes only, but, since hub nodes neighbor non-hubs, an entire graph can be learned more accurately with fewer samples. The paper includes sample complexity bounds for Ising graphical models. In this example, we generate correlated binary data for cheap (compared to Gibbs sampling) with Normal copula functions.
library(huge)
library(Matrix)
p <- 40
n <- round(8*p * log(p))
set.seed(10010)
dat <- huge.generator(n, p, 'hub', verbose=FALSE, v=.3, u=.1)
## Generate correlated binomial data with the Normal copula method
X <- apply(apply(scale(dat$data), 2, pnorm), 2, qbinom, size=1, prob=.5)
ising.net <- function(Z, lambda, link='binomial') {
p <- ncol(Z)
l <- length(lambda)
estFun <- function(i) {
betamat <- matrix(NA, p, l)
betamat[-i,] <- as.matrix(glmnet::glmnet(Z[,-i], Z[,i], family=link, lambda=lambda)$beta)
betamat
}
est <- parallel::mcmapply(estFun, 1:p, mc.cores=1, SIMPLIFY='array')
list(path=apply(est, 2, function(x) { diag(x) <- 0 ; as(x!=0, "lgCMatrix") }))
}
lams <- getLamPath(.2, .005, 30)
out <- pulsar(X, ising.net, fargs=list(lambda=lams), criterion=c('stars', 'sufficiency'),
subsample.ratio=.6, rep.num=60, seed=10010)
## Warning: 1 job had warning: "'as(<matrix>, "lgCMatrix")' is deprecated.
## Use 'as(as(as(., "lMatrix"), "generalMatrix"), "CsparseMatrix")' instead.
## See help("Deprecated") and help("Matrix-deprecated")."
For non-hubs, the sufficiency metric should have a large dip in the regularization path while hub nodes are expected to be relatively flat:
plot(lams, out$sufficiency$merge[1,], type='l', ylab="sufficiency")
points(lams, out$sufficiency$merge[4,], type='l', col='red')
Estimate the hub graph by excluding hub nodes from neighborhood selection (algorithm 2 from the paper)
tandonest <- function(i, out, tu, tl) {
rmerge <- out$sufficiency$merge
p <- nrow(rmerge)
l <- ncol(rmerge)
prime <- tail(which(rmerge[i,] > tu), 1)
if (length(prime) == 0) return(rep(FALSE, p))
naught <- tail(which(rmerge[i,1:prime] < tl), 1)
if (length(naught) == 1) {
pmerge <- out$stars$merge[[naught]][i,]
return(pmerge >= (1+sqrt(1-4*tl))/2)
} else return(rep(FALSE, p))
}
net <- sapply(1:p, tandonest, out=out, tu=.2, tl=.15)
## Symmetrize
net <- sign(t(net) + net)
To replicate the augmented AGNES (A-AGNES) method of Caballe, Bochkina, and Mayer (2015), use the
node-wise dissimilarity metric (diss) and the AGNES algorithm as
implemented in the cluster
package. A-AGNES selects the
lambda that minimizes the variance of the estimated diss + the [squared]
bias of the expected estimated dissimilarities w.r.t. the AGNES-selected
graph - that has the maximum agglomerative coefficient over the
path.
dat <- huge.generator(n, p, 'hub', verbose=FALSE, v=.1, u=.4)
out.diss <- pulsar(dat$data, fargs=list(lambda=lams, verbose=FALSE),
rep.num=20, criterion=c('diss', 'stars'))
fit <- refit(out.diss, 'stars')
## Compute the max agglomerative coefficient over the full path
path.diss <- lapply(fit$est$path, pulsar:::graph.diss)
library(cluster)
acfun <- function(x) agnes(x, diss=TRUE)$ac
ac <- sapply(path.diss, acfun)
ac.sel <- out.diss$diss$merge[[which.max(ac)]]
## Estimate the diss bias
dissbias <- sapply(out.diss$diss$merge,
function(x) mean((x-ac.sel)^2)/2)
varbias <- out.diss$diss$summary + dissbias
## Select the index and refit
opt.index(out.diss, 'diss') <- which.min(varbias)
fit.diss <- refit(out.diss)
plot(out.diss)
par(mfrow=c(1,2))
plot(network::network(as.matrix(fit.diss$refit$diss)), main='A-AGNES')
plot(network::network(as.matrix(fit.diss$refit$stars)), main='stars')
Please contact the package authors to request your favorite selection criterion to include with this package.